

HUMAN BODY MODELING

Femke Danckaers, Toon Huysmans, Jan Sijbers iMinds Vision Lab, Dept. of Physics, University of Antwerp, Belgium

Overview

- Introduction
- Correspondence preserving elastic surface registration
- Building a shape model
- Shape prediction from features
- Conclusions and future work

Introduction

Introduction

- Capturing shape variability
- Predict a shape based on a simple set of features

Applications

- Early validation of near-body product design, such as chairs, backpacks, clothing,...
 - Virtual validation for wide range of body shapes by linking CAD design on mannequin
 - Improved fit leads to increased comfort
- Development of sizing systems for retail
 - □ For e.g. furniture
 - Based on body type

Correspondence Preserving Elastic Surface Registration

Surface Registration Framework

Registration with ShapeModel Prior. ICPR 2014.

Find Corresponding Points

points

affine <u>ali</u>gnment

Find Corresponding Points

- Cast a ray in the direction of the normal from source points to target surface
- Constraints
 - Maximum angle between source and target normal
 - maximum distance from source
 - no intersections allowed between source and target

Affine Alignment

- Surface alignment based on corresponding points
 affine transformation
 - least squares solution

Elastic Deformation

- displace each vertex separately
 - translation vector per vertex
- stiffness
 - neighboring vertices forced to move along
 - decreases as iterations progress

* B. Amberg, S. Romdhani, T. Vetter. Optimal Step Nonrigid ICP Algorithms for Surface Registration. In Proc. Conf. Computer Vision and Pattern Recognition, 2007.

Elastic Deformation

- displace each vertex separately
 - translation vector per vertex
- stiffness

source

- neighboring vertices forced to move along
- decreases as iterations progress

affine alignment elastic

corresponding points

deformation

target

deformed source

* B. Amberg, S. Romdhani, T. Vetter. Optimal Step Nonrigid ICP Algorithms for Surface Registration. In Proc. Conf. Computer Vision and Pattern Recognition, 2007.

Surface Registration Framework

13

- \Box affine alignment \mathbf{r} + elastic deformation \mathbf{e}
 - surface at iteration i:

$$\mathbf{s}_i = (\alpha - 1)\mathbf{r}(\mathbf{s}_{i-1}) + \alpha \mathbf{e}(\mathbf{s}_{i-1}, \beta)$$

- \square stiffness factor β to control elasticity
- lacksquare influence of elastic deformation lpha
- no surface parameterization involved
 - applicable to complex topologies
 - not sensitive to topological noise

Correspondences

Building a Shape Model

Data

- CAESAR database
 - Standing and seated pose
 - Antropometrical measures + meta-data
 - □ Markers (annotated + 3D coordinates)
 - □ In our current model: 147 men and 265 women

Population Correspondence

Population Correspondence

- statistical shape model
 - lacksquare mean surface \overline{X}
 - modes of variation
 - \Box Instance $Y = \overline{X} + \Phi b$
 - f
 ho Eigenvector matrix: $f \Phi$
 - Parameters of instance: b
- model parameters
 - □ size and shape
 - position normalization via Procrustes alignment
 - iterative affine alignment to population mean

Shape Modes all subjects

Mode 2

Shape Modes all subjects

Model Performance -

compactness

21

The compactness of the model measured by the cummulative variance

Detail of 20 first modes

Number of shape modes

Other Shape Models

Shape Prediction from Features

Input feature parameters

- Gender
- Height
- Weight
- □ Age
- Waist circumference
- Chest circumference
- Hip circumference
- Thigh circumference
- Other interesting features?

Predict Shape from Features

- Build mapping matrix M
 - $\square M = BF^+$, with B the PC weights of each surface and F the feature matrix of each surface from the population
- Calculate new weights
 - \Box b = Mf, with b the individual PC weights and f the desired feature vector
- \Box Calculate new surface x'
 - $\Box x' = \overline{x} + (P \cdot b)$, with \overline{x} the mean surface and P the PC vectors

Allen, B., Curless, B., Popovic, Z., The Space of Human Body Shapes: Reconstruction and Parameterization from Range Scans. ACM SIGGRAPH, 2003, pp,1-8

Predicted shape from features

Predicted shape from features

BMI Variation

Gender Variation

Conclusion and Next Steps

Conclusions

 Surface registration leads to accurate correspondences

Statistical shape model can be used to describe the population

 New shapes can be generated from a given set of features

Next Steps

- More complex modeling of feature modification
 - E.g. Via subpopulations or non-linear models
- Shape clustering
 - Distinguish different body types
- Pose normalization
 - □ More accurate shape clusters
 - More accuracy on feature influence
 - Deducing asymmetry

